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Abstract 

Efficiency, cost-effectiveness and operational safety of solar plants must be based on the knowledge of pressure 
loss as well as flow distribution and temperature distribution of branched collector arrays. Therefore, pipe network 
analysis is an essential step during the dimensioning process. This article presents an explicit, fast converging 
numerical scheme especially suited for collector fields. The effect of pipe dimensions and pipe routing on flow, 
temperature and pressure-distribution and collector field efficiency is demonstrated by application of a dedicated 
software tool, which is provided as an open source code. 
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1. Introduction 

Circuits of large solar plants are branched networks of pipes. Pipe network analysis is needed to find the best 
solution among the many possible ways of pipe routing, the corresponding pipe diameters and the pump size. The 
optimum is characterized by the minimum of costs while each of the auxiliary conditions, e.g. pressure loss, 
limiting flow velocity, maximum variation of exit temperatures and thermal efficiency, are fulfilled. Several 
approaches for cost optimization of pipe networks can be found in literature. Murphy et al. (1993) developed an 
algorithm for water supply networks. Frank (2007) derived a numerical scheme for the optimization of pipe 
routing, pipe dimension and pump power of a large solar plant for district heating. Park et al. (2017) developed a 
model for the optimization of district heating networks. 

A pipe network is characterized by the geometry of the pipes and the nodes where pipes are connected to other 
pipes. A node connecting two pipes is called junction. A node where two pipes with the same direction are 
connected and a third pipe is connected perpendicularly to the same node is called T-junction. A node is considered 
zero-dimensional. It can therefore store neither mass nor energy. A pipe or a series of pipes connecting two 
neighboring nodes defines a branch. A branch can also contain hydraulic elements such as valves, pumps or heat 
exchangers. A path consists of a series of branches. A closed path within a pipe network defines a loop. A loop is 
called elementary if the number of its nodes cannot be reduced by a shortcut. A pipe network is irregular if 
elementary loops of different size are arranged in an irregular pattern. A network is called periodical if it is 
dominated by a repeated arrangement of identical elementary loops. Periodical networks usually contain branches 
that dominate the pressure loss. These branches are named strings. Strings often consist of a series of identical 
hydraulic elements, e.g. serially connected solar collectors. In periodical networks, arrays of identical strings are 
connected in parallel by distribution and collection manifolds. 

All methods for pipe network analysis are based on conservation equations for mass and momentum. Since fluid 
properties are temperature dependent, energy conservation must also be considered. The flow distribution within 
a pipe network is expressed by two sets of equations. The node-equations (1) define mass conservation in each 
node, j, where, m is the number of pipes connected, ρk, is the density of the liquid entering or leaving the branch, 
k, and, V̇k, is the flow rate in the same branch. 
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The loop-equations (2) formulate momentum conservation. In steady state operation the sum of pressure losses, 
∆pk, of the branches, k, of any closed loop is zero. 
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In section 2 of this article, an equivalent formulation is used: The sum of pressure losses between two nodes, e.g. 
inlet and outlet of a collector field, is the same for all paths. Because of the non-linear relationship between 
flowrate and pressure loss these equations are solved by iterative methods. The choice of method depends 
primarily on the structure of the network, the number of nodes and the mode of operation. In the following, only 
methods for steady state flow are considered. 

The probably oldest and still widely used method was developed by Cross (1936). The iterative procedure starts 
with initial values for the mass flow, which satisfy the node-equations. The evaluation of the loop-equation results 
in an error that is used to determine a correction of the flow rate, ΔV̇, which is then added to the flow of all 
branches in the loop. The loop equation is subsequently applied to each elementary loop of the network. Derivation 
of Eq. (3) can be found in many textbooks, e.g. Massoud (2005), Horlacher and Lüdecke (2006) and Eismann 
(2017).  
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In Eq. (3) the elementary mesh, k, has m branches. The term Rk,i is the dimensional friction factor, 
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which is a function of a dimensionless friction factor, λ, the density, ρ, of the fluid and the pipe dimensions, l and 
d. The procedure is repeated until the sum of relative changes of the flowrates is below a predefined margin. The 
method of Cross (1936) represents the class of explicit, sequential loop-methods. It is applicable for both irregular 
and periodical networks. Because of the sequential procedure, convergence is rather slow. 

2. Method for periodical networks with dominant strings 

Networks of solar thermal plants are essentially periodical. Figure 1 shows an array of n strings connected in 
parallel by distribution and collection manifolds. The strings, Sk, k = 1..n, consist of one or more serially connected 
absorbers. The manifolds consist of a series of identical distribution pipes, Dk, and collection pipes, Ck. There are 
two ways of connecting arrays of strings. One-sided connection as shown in Figure 1 a) is figuratively called C-

Figure 1 Row of Absorbers connected in parallel a) C-configuration and b) Z-configuration. 
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configuration because the flow path between inlet and outlet through any of the strings resembles the letter C.  
Figure 1 b) shows the alternative Z-configuration where all flow paths between inlet and outlet have the same 
length. 

The primary goal of any method of pipe network analysis is to find the steady state mass flow distribution in an 
array of strings for a predetermined total mass flow, ṁ. Based on the corresponding chapter in Eismann (2017, p. 
37) a fast converging method, well adapted for arrangements shown in Figure 1,  is derived as follows. 

The dominancy of the strings should be expressed by a dimensionless number valid for the whole array. The 
obvious choice is the ratio of pressure losses of the strings and the corresponding distribution and collection pipe 
expressed by  the Darcy-Weisbach (Brown 2002) formula, 
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It is therefore necessary to represent strings, which can have a rather complex internal hydraulic circuit, by an 
approximately equivalent pipe with a length, lS, and a diameter, dS. Setting friction factors and flow velocities to 
the same values results in an expression which can be interpreted as a dominancy ratio, 
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The iterative procedure is initiated by a uniform mass flow distribution. 
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In a first step, mass conservation is applied to each node to calculate the mass flows in the distribution and 
collection pipes. The mass flows for C-configuration are, 
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and for and Z-configuration, 
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In a second step, the flow velocities in all distribution pipes, collection pipes and strings, w = 4ṁ/πd2ρ, and the 
pressure losses along each path between inlet and outlet are calculated. The pressure losses for C- configuration 
are, 
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and for Z-configuration, 
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Furthermore, the average pressure loss of the paths between inlet and outlet is calculated. 
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Pipe friction is usually, by far, the dominant contribution to the pressure loss. Each term can incorporate minor 
losses due to elbows, abrupt change of diameter and T-junctions. Momentum conservation requires the pressure 
losses calculated by Eq. (10) or Eq. (11), respectively, to be equal. With the initial uniform mass flow distribution, 
however, the pressure losses will differ significantly. 
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The following third step, which corrects the mass flow rates, is the key to the method. It is based on the following 
considerations. The friction factor for laminar flow in cylindrical tubes, 
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results in a pressure loss proportional to the mass flow. The friction factor of Blasius (1913) for turbulent flow in 
hydraulically smooth pipes, 

0.250.3451 Returb   , (14) 

results in a pressure loss proportional to ṁ1.75. The mass flow of each string is simultaneously corrected such that 
the pressure loss of the corresponding path equals the average pressure loss. 
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The transition region where both laminar and turbulent flow can occur is defined as 2200 < Re < 3000. The 
denominator, f, of the exponent in Eq. (15) is, 
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Convergence can be enhanced by an over-relaxation factor, γ > 1, whose optimum value depends on the dominance 
ratio. If the Reynolds number of any string is within the transition region, an over-relaxation factor of one is 
recommended. 

Because of the nonlinear relationship between mass flow and pressure loss, the sum of the new mass flows is 
different from the predetermined total mass flow, ṁ. In a fourth and final step, each mass flow is correct by the 
ratio of the predetermined total mass flow and the iterative solution of the total mass flow. The new approximation 
for the mass flows are, 
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Steps 1 to 4 are repeated until the approximate solution is close enough to the theoretical limit. A suitable criterion 
is the relative standard deviation of the pressure losses, whose limit, σ, can be set according to the required 
accuracy, e.g. σ = 0.001. 
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For dominancy ratios above RD = 2.5 the method converges faster than the method of Cross (1936). It is also 
applicable to hierarchically structured, periodical networks, where periodically arranged collector arrays are 
regarded as strings. However, requirement on periodicity can be alleviated considerably. The method is practical 
in cases where arrays have different numbers of strings and/or where the manifolds consist of a series of pipes 
with different diameters and length. 

The following considerations are essential for any numerical method for pipe network analysis. Reynolds numbers 
in solar plants are quite low and often cover the regions of laminar-, transitional- and turbulent flow. Discontinuity 
at the transition between laminar and turbulent flow cause convergence problems. It is therefore mandatory to use 
friction factor correlations which are continuous functions of the Reynolds number covering laminar, transitional, 
and turbulent flow regions (Eismann and Adams 2018). In the following examples, the correlations (19) to (21) 
of Zanke (1993) are used, adapted for a transition region 2200 < Re < 3000. The probability for turbulent flow in 
the transition region is, 

 exp exp 10.45 0.0043Re 1turb lamP P        . (19) 
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The friction factor, Eq. (21), is defined as a linear combination of the laminar friction factor, Eq. (13), and the 
(explicit!) turbulent friction factor, Eq. (20), 
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weighted by their respective probabilities: 

 1 turb lam turb turbP P       (21) 

3. Examples 

3.1. Convergence properties 

Convergence of the method is demonstrated using the example of an array of 10 strings. Each string consists of 
one flat plate collectors with 2.3 m2 aperture area and a meander-type absorber. The absorber tube is characterized 
by an equivalent pipe length of 18 m and 7 mm inner diameter. The strings are connected in C-configuration by 
distribution and collection pipes of 2.2 m length and 16 mm inner diameter. Minor losses in T-junctions are 
neglected. The flow is isothermal. Fluid properties of water at 20 °C, ν = 1.044·10-6 m2/s and ρ = 998 kg/m3, are 
used. The dominance ratio is RD = 10.3. The accuracy limit was set to σ = 0.001. 

The total mass flow is 0.192 kg/s, which corresponds to an area specific volumetric flow rate of 30 l/hm2. The 
Reynolds number in all strings is above Re = 3000. According to Eq. (16), the appropriate C. Figure 2 shows 
iterative solutions of the flow distribution. Both the new method and the method of Cross (1936) converge towards 
the same final solution. With an over-relaxation factor of 1.1 the new method reaches the solution after three 
iterations, whereas the method of Cross (1936) requires 36 iterations. 

For an area specific volumetric flow rate of 10 l/hm2 the Reynolds number in all strings is below Re = 2200. With 
an over-relaxation factor of 1.2 the new method reaches the solution after four iterations, whereas the method of 
Cross (1936) requires 81 iterations. The reason for the fast convergence for purely laminar or turbulent flow lies 
in the denominator, f, which corresponds perfectly with the flow pattern of all strings. 

Figure 3 shows the results for an average area specific volumetric flow rate of 20 l/hm2. The Reynolds numbers 
1857 ≤Re ≤ 2830 cover parts of the laminar and transition region. Because there is a probability for turbulent flow 
the denominator, f, must be set to the value 1.75. Application of Eq. (15) to strings with laminar flow results in 
slower convergence. The new method reaches the solution with 11 iterations compared to 46 iterations of the 
method of Cross. 
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Figure 2 Convergence from initial uniform flow distribution of 30 l/hm2 to the final solution. 
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3.2 Practical example 

A practical example in two versions is discussed using the EXCEL/VBA tool HYDRA dedicated to the 
dimensioning and thorough cost optimization of solar circuits. It is based on the above-described method for pipe 
network analysis and includes models for solar collectors, cylindrical pipes and corrugated metal hoses, pumps, 
check valves, fittings and heat exchangers. The following example illustrates some of the capabilities of the 
software. 

A collector field consists of six arrays of glazed flat plate collectors with selective absorbers arranged in a row 
with a distance of 4 m between the leading edges of the arrays. Each collector has an absorber as specified in 
section 3.1. The conversion factor and the heat loss coefficients are, η0 = 0.8 -, a1 = 3.6 W/Km2 and a2 = 0.01 
W/K2m2. Distribution and collection pipes have an inner diameter of 16 mm and a length of 2 m. Solar gain is 
transferred to the liquid by the absorber tubes only. Metal bellows arranged between adjacent pipe ends 
compensate thermal expansion of the distribution and collection pipes. Metal bellows are characterized by a 
hydraulic diameter of 16 mm, a length of 60 mm and a constant turbulent friction factor of λ = 0.095. The arrays 
are connected in parallel by staged field pipes with an inner diameter of 25, 32 and 39 mm. For the pressure losses 
in T-junctions the correlations of Wagner (2001) are used. Fluid properties of the water-glycol mixture 
TYFOCOR®LS® (TYFOROP 2015) are used. The area-specific flow rate is 30 l/hm2. Inlet temperature is 55 °C. 
Solar irradiation is 1000 W/m2 and ambient temperature is 20 °C. Figure 4 shows an arrangement where both the 
collectors and the arrays are connected in Z-configuration. 

Figure 5 shows the flow distribution of the collector field. As can be expected, the inhomogeneity of the flow 
distribution is nearly symmetrical and rather small. The temperature at the outlet is 74 °C and the useful gain is 
84.4 kW. The pressure loss between inlet and outlet is 37.5 kPa. 
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Figure 4 Flat-plate collector field. Collectors and arrays connected in Z-configuration. 
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In the version shown in Figure 6, both the collectors and the arrays are connected in C-configuration. The flow 
distribution shown in Figure 7 is more inhomogeneous than with Z-configuration. 

Expectedly, the highest flowrate occurs in the first string of the first array whereas the flow rate in the last string 
of the sixth array is smallest. The flow patterns cover the complete transitional region (yellow bars) and the 
adjacent regions of laminar (blue bars) and turbulent flow (red bars). 

C-configuration is much more economic than Z-configuration. The costs of about 40 meters of field pipes is saved. 
Because of the smaller pressure loss of only 30 kPa the operational costs are also lower. Furthermore, less space 
for the pipe routing is needed. 

Figure 5 Flow distribution. Collectors and arrays connected in Z-configuration. 

Field pipes

Connecting pipes

4 m

Figure 6 Flat-plate collector field. Collectors and arrays connected in C-configuration. 

Figure 7 Flow distribution. Collectors and arrays connected in C-configuration. 
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In all operational states, the pressure must be well above atmospheric pressure and vapor pressure. Therefore, 
information about pressure and temperature distributions is needed. Figure 8 shows the pressure in the distribution 
and collection manifolds. 

The more pronounced inhomogeneity of the flow distribution causes a corresponding distribution of the exit 
temperature shown in Figure 9. However, the loss of collector efficiency compared to Z-configuration is below 
0.2 % and easily compensated by the avoided heat loss of 40 m field pipes. The arrays are arranged in reverse 
order for better visibility. The base plane of the diagram at 55 °C indicates the temperature of the entering fluid.  

Figure 10 shows the temperature distribution in the header tubes. If the temperature sensor is placed in the 
collection pipe, the first collector of the third array should be chosen where the temperature differs only little from 
the temperature in the forward line. 

In order to optimize venting capacity and to prevent partial stagnation, stagnant pipe sections must be avoided. 
Pipe routing is therefore predetermined by the collector hydraulics. Examples for flat plate collectors are shown 
in Figure 11. 

 

 

Figure 9 Exit temperature distribution. Collectors and arrays connected in C-configuration. 

Figure 8 Pressure distribution. Collectors and arrays connected in Z-configuration. 
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4. Conclusions 

A method for pipe network analysis was derived, suitable for periodical networks with dominant strings. The 
method is not only explicit and therefore easy to program but also simultaneous which accounts for the fast 
convergence. For dominance ratios RD > 10, which is a typical value for a flat plate collector with meander-type 
absorber, convergence is of the magnitude 10 times faster than the explicit, sequential method of Cross (1936). 

The Excel/VBA tool HYDRA, dedicated to the dimensioning and thorough cost optimization of solar circuits, 
was used to demonstrate the application of the method. Comparison of C- and Z-configurations of a large collector 
field has shown that the influence of inhomogeneous flow distribution on the efficiency is negligible. In case of 
the example, one would choose the much cheaper C-configuration. However, it is not advisable to generalize this 
conclusion. Other aspects, like the internal collector hydraulics, venting capability and the flow velocity limit 
must also be considered. HYDRA is applicable to the design of solar thermal plants with glazed and unglazed flat 
plate collectors, vacuum tube collectors and PV/T collectors. 

The author provides HYDRA as an open source code (Eismann 2018), with the objective of supporting the solar 
thermal market. 
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Figure 10 Temperature distribution in the collection manifolds. Collectors and arrays connected in C-configuration. 

C-configuration Z-configuration

Figure 11 Flat-plate collectors suited for C- and Z-configuration 
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6. Nomenclature 

A Collector area 

a1 linear heat loss coefficient [W/Km2] 

a2 quadratic heat loss coefficient [W/K2m2] 

d pipe diameter [m] 

l pipe length [m] 

ṁ mass flow rate [kg/s] 

Plam  probability for laminar flow [-] 

Pturb  probability for turbulent flow [-] 

Δp pressure loss [bar, Pa] 

RD dominancy ratio [-] 

Re Reynolds number [-] 

V̇  volumetric flow rate [m3/s] 

w  average flow velocity  [m/s] 

Greek Symbols 

γ 

η0 conversion factor [-] 

λ friction factor [-] 

ν kinematic viscosity [m2/ s] 

ρ density [kg/ m3] 

Subscripts 

C collection pipe 

D distribution pipe 

S string 
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