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ABSTRACT

A powerful analytical platform for absolute quantification of 19 important intracellular metabolites from central metabolism of B.
subtilis strains was developed and validated. The metabolites cover parts of glycolysis, tricarboxylic acid cycle, energy metabolism,
and pentose-phosphate pathway. The developed method is characterized by a state of the art sample processing strategy,
emphasizes the sustainable minimization of solvent consumption, and completely avoids the appearance of cell leakage for
prokaryotic cells, which is a problem in classically used cold solvent quenching procedures. The method was applied for
biotechnologically engineered B. subtilis strains used for fermentative production of Riboflavin (Vitamin B,). A comparison of the
intracellular metabolite concentration profiles during standard fermentations of awild type B. subtilis strain and two engineered,
different efficient Riboflavin producer strains resulted in substantial differences. Important achievements were that the results allowed
disproving a hypothesis why the optimized strain has the ability to produce significantly more Riboflavin and gave evidence on a
possible bottleneck in the strains. The application of the method as a fermentation quality control tool looks very promising.

CONCEPT

The developed method follows a state of the art sample processing
strategy using a differential method. The concentrations of the total
metabolites (intra- and extracellular) and extracellular metabolites

are determined separately. The intracellular amount is calculated as the
difference of both metabolite concentration measurements.

RESULTS

The following figure summarizes the developed/validated state of the
art sample processing strategy for metabolism quenching and
metabolite extraction of B. subtilis fermentation samples:

A major discovery of this thesis was the substantially different energy
charge profiles of the different strains. The energy charge is defined as
the ratio of the intracellular adenosine nucleotide concentrations:
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Measurement

the higher Riboflavin yield.

Investigations of the developed method on the application as a
fermentation quality control tool was done by a comparison of the
intracellular metabolite profiles of the average producer strain in a
correct accomplished fermentation run vs. a biologically contaminated

The extracts were measured using a ion pair reversed phase HPLC-
separation and MS/MS-quantification:
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CONCLUSIONS

A powerful analytical platform was established based on a state of
the art LC-MS/MS system. The method includes a basic metabolite
catalog containing 19 metabolites from central metabolisms. The
method will be used routinely for research purposes by DSM

Nutritional Products and continuously improved, e.g. by addition of
more metabolites and investigation of the applicability of the platform for
new microorganisms.
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