

Medical Imaging

Segmentation with Level Sets

Contour propagation by initial conditions (40, 100, 150 and 200 iterations)

Segmentation (i.e. delineation of anatomical structures in image data) plays a crucial role in medical imaging. Due to the complexity and variability of anatomic shapes segmentation is still a big challenge.

A wide variety of segmentation techniques have been proposed: a) traditional low-level image processing techniques [1] which consider only local information and generates infeasible object boundaries and b) more robust techniques with deformable models [2] which exploits constraints from the image data (bottom-up) together with "a priori" knowledge about the shape (topdown).

The Institute for Medical and Analytical Technologies is focusing in the field of Medical Imaging on Data-Visualization, -Analysis and Modeling. The study of segmentation tech-niques is therefore a fundamental issue.

For efficient and robust segmentation of various anatomic structures we implemented the Chan-Vese- algorithm (a deformable model with Level Sets).

Algorithm

The Chan-Vese algorithm is an deformable model approach with contour evolution based on the Mumford-Shah functional, and the level sets of Osher and Sethian. A comprehensive description is given in [3].

$$E[C] := \lambda_{in} \cdot \int_{\Omega_{in}} (I(x) - c_{in})^2 + \lambda_{out} \cdot \int_{\Omega_{out}} (I(x) - c_{out})^2 + \gamma \cdot L_C$$

Given a gray-value image $I(x) : \Omega \to R^+$, the Chan- Vase algorithm minimizes the energy to define the contour *C* that partitions the image domain Ω into two subdomains Ω_{in} , Ω_{out} (where C_{in} , C_{out} are the average gray-values in the sub-domains, L_C is the length of the contour *C* and λ_{in} , λ_{out} , γ are design parameters).

The propagation of C (on R^2) is solved by using Euler-Lagrange (PDE on R^2) and approxi-mation (Interation).

Results Conclusion

First applications with specific anatomical structures (brain, vessels, spine) led to robust and accurate segmentation results. And a strength of the algorithm is its ability to handle the topology changes (level sets).

Due to the inability to distinguish between different shapes (no model-information) the algorithm is mainly useful for semi-automated segmentation.

References:

[1] Bezdek, J.C., et .al.:Review of MR image segmentation techniques unsing pattern recognition. Med.Phys., vol. 20, no4, 1993.

[2] McInerney, T., Trezopoulos,D.: Deformable models in medical image analysis: A survey. Medical Image Analysis 1 (2) :91-108, 1999.

[3] T. Chan and L. Vese. An active contour model without edges. Int. Conf. Scale-Space Theories in Computer Vision, 16(2):266-277, 1999.

We invite you to explore and develop new ideas together with us!

Alex Ringenbach T : +41 61 4674-696 M: alex.ringenbach@fhnw.ch