## An inorganic antimicrobial surface modification for orthopaedic implants

P Gruner<sup>1</sup>, W Moser<sup>2</sup>, M Wittwer<sup>3</sup>, J Rüegg<sup>3</sup>, H Holeczek<sup>4</sup>, O Braissant<sup>5</sup>, K Maniura<sup>6</sup>, M de Wild<sup>3</sup>

<sup>1</sup> MEDICOAT AG, Mägenwil, CH. <sup>2</sup> Atesos AG, Aarau, CH.

<sup>3</sup> University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, CH.

<sup>4</sup> Fraunhofer-Institut, Institut für Produktionstechnik und Automatisierung, Stuttgart, D.

<sup>5</sup> University of Basel, Center of Biomechanics & Biocalorimetry, Allschwil, CH.

INTRODUCTION: The rising number periprosthetic infections has led the development of various strategies for bactericidal implant coatings. [1] We investigated the aproach of an inorganic calcium hydroxide Ca(OH)<sub>2</sub> coating that expresses an initial antibacterial effect before it transforms into hydroxyapatite. [2] While electrochemically this of antimicrobial coating was previously shown preclinically [3], we here verified the bactericidal effect in-vitro.

**METHODS:**  $\emptyset15\text{mm}$  titanium disks were coated by titanium plasma spray (TPS) before a 20 μm thick  $Ca(OH)_2$  coating was electrochemically deposited. The surface was inspected by SEM (Zeiss Supra).  $Ca(OH)_2$  pellets (Fluka) with a calcium hydrogen phosphate dihydrate filler (Emcompress Premium JRS Pharma) were manufactured (Ca(OH)<sub>2</sub>/CaHPO<sub>4</sub> · 2 H<sub>2</sub>O = 50% : 50%) and served as standardized positive control.



Fig. 1: SEM image of TPS surface electrochemically coated with a lamellar Ca(OH)<sub>2</sub>-layer.

S.aureus ATCC® 35556<sup>TM</sup> was prepared in 10 ml Luria Broth (LB) media (Invitrogen) and cultivated over night at 37°C. OD600 measurements (Jenway 6320D spectrophotometer) and dilutions were performed to provide 10<sup>4</sup> cfu in 20 μl LB media. The bacteria suspension was plated on LB-agar (Invitrogen) after mixing with additional 480 μl of LB media. After 10 minutes of soaking time, the Ti-disks or pellets were placed an incubated at 37°C overnight. The inhibition and diffusion zones around the disk/pellets were then determined along three orientations.

**RESULTS:** The morphology of the coating consists of fine lamellae on top of the TPS coating, see Fig. 1. Bacterial growth is inhibited in a region around the Ca(OH)<sub>2</sub> pellet due to increased pH, see Fig. 2 left. Whereas unaffected colonies are found around the uncoated Ti-disks, an inhibition zone and a diffusion zone is observed around the Ca(OH)<sub>2</sub>-coated disks, see Fig. 2 right and Table 1.







Fig. 2: Growth of S.aureus. a) Standardized Ca(OH)<sub>2</sub>-loaded tablets are used as positive control: growth is repressed in the inner ring. A diffusion ring extends to the outer ring, b) uncoated Ti as a negative control: No impact to bacteria growth. c) Ca(OH)<sub>2</sub>-coated Ti: Complete inhibition in the close proximity, reduced bacteria growth in the diffusion zone.

*Table 1. Inhibition (I) and diffusion (D) zones.* 

|                            | <i>I</i> [mm] | D [mm]        |
|----------------------------|---------------|---------------|
| Ca(OH) <sub>2</sub> pellet | $3.0 \pm 0.2$ | $4.9 \pm 0.2$ |
| Ti control                 | $0 \pm 0$     | $0 \pm 0$     |
| disk 1                     | $0.7 \pm 0.3$ | $2.1 \pm 0.5$ |
| disk 2                     | $0.5 \pm 0.4$ | $1.8 \pm 0.5$ |
| disk 3                     | $0.6 \pm 0.3$ | $2.6 \pm 0.6$ |
| disk 4                     | $0.4 \pm 0.2$ | $1.0 \pm 0.2$ |

**DISCUSSION & CONCLUSIONS:** The antibacterial effect of the electrochemically deposited Ca(OH)<sub>2</sub>-coating in LB agar without additional buffer is confirmed.

**REFERENCES:** <sup>1</sup> J. Gallo, et al (2014) *Int J Mol Sci* 15, 13849-13880. <sup>2</sup> O. Braissant, et al (2015) *JBMR B* **103** 6: 1161-7. <sup>3</sup> Harrasser, et al (2016) *J Appl Biomater Funct Mater* **14** 4: e441-e448.

**ACKNOWLEDGEMENTS:** This project with project number 120331-06 was supported by the Forschungsfonds Aargau.



<sup>&</sup>lt;sup>6</sup> Biointerfaces, Laboratory for Materials-Biology Interactions, Empa, St. Gallen, CH.