An inorganic antimicrobial surface modification for orthopaedic implants P Gruner¹, W Moser², M Wittwer³, J Rüegg³, H Holeczek⁴, O Braissant⁵, K Maniura⁶, M de Wild³ ¹ MEDICOAT AG, Mägenwil, CH. ² Atesos AG, Aarau, CH. ³ University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, CH. ⁴ Fraunhofer-Institut, Institut für Produktionstechnik und Automatisierung, Stuttgart, D. ⁵ University of Basel, Center of Biomechanics & Biocalorimetry, Allschwil, CH. INTRODUCTION: The rising number periprosthetic infections has led the development of various strategies for bactericidal implant coatings. [1] We investigated the aproach of an inorganic calcium hydroxide Ca(OH)₂ coating that expresses an initial antibacterial effect before it transforms into hydroxyapatite. [2] While electrochemically this of antimicrobial coating was previously shown preclinically [3], we here verified the bactericidal effect in-vitro. **METHODS:** $\emptyset15\text{mm}$ titanium disks were coated by titanium plasma spray (TPS) before a 20 μm thick $Ca(OH)_2$ coating was electrochemically deposited. The surface was inspected by SEM (Zeiss Supra). $Ca(OH)_2$ pellets (Fluka) with a calcium hydrogen phosphate dihydrate filler (Emcompress Premium JRS Pharma) were manufactured (Ca(OH)₂/CaHPO₄ · 2 H₂O = 50% : 50%) and served as standardized positive control. Fig. 1: SEM image of TPS surface electrochemically coated with a lamellar Ca(OH)₂-layer. S.aureus ATCC® 35556TM was prepared in 10 ml Luria Broth (LB) media (Invitrogen) and cultivated over night at 37°C. OD600 measurements (Jenway 6320D spectrophotometer) and dilutions were performed to provide 10⁴ cfu in 20 μl LB media. The bacteria suspension was plated on LB-agar (Invitrogen) after mixing with additional 480 μl of LB media. After 10 minutes of soaking time, the Ti-disks or pellets were placed an incubated at 37°C overnight. The inhibition and diffusion zones around the disk/pellets were then determined along three orientations. **RESULTS:** The morphology of the coating consists of fine lamellae on top of the TPS coating, see Fig. 1. Bacterial growth is inhibited in a region around the Ca(OH)₂ pellet due to increased pH, see Fig. 2 left. Whereas unaffected colonies are found around the uncoated Ti-disks, an inhibition zone and a diffusion zone is observed around the Ca(OH)₂-coated disks, see Fig. 2 right and Table 1. Fig. 2: Growth of S.aureus. a) Standardized Ca(OH)₂-loaded tablets are used as positive control: growth is repressed in the inner ring. A diffusion ring extends to the outer ring, b) uncoated Ti as a negative control: No impact to bacteria growth. c) Ca(OH)₂-coated Ti: Complete inhibition in the close proximity, reduced bacteria growth in the diffusion zone. *Table 1. Inhibition (I) and diffusion (D) zones.* | | <i>I</i> [mm] | D [mm] | |----------------------------|---------------|---------------| | Ca(OH) ₂ pellet | 3.0 ± 0.2 | 4.9 ± 0.2 | | Ti control | 0 ± 0 | 0 ± 0 | | disk 1 | 0.7 ± 0.3 | 2.1 ± 0.5 | | disk 2 | 0.5 ± 0.4 | 1.8 ± 0.5 | | disk 3 | 0.6 ± 0.3 | 2.6 ± 0.6 | | disk 4 | 0.4 ± 0.2 | 1.0 ± 0.2 | **DISCUSSION & CONCLUSIONS:** The antibacterial effect of the electrochemically deposited Ca(OH)₂-coating in LB agar without additional buffer is confirmed. **REFERENCES:** ¹ J. Gallo, et al (2014) *Int J Mol Sci* 15, 13849-13880. ² O. Braissant, et al (2015) *JBMR B* **103** 6: 1161-7. ³ Harrasser, et al (2016) *J Appl Biomater Funct Mater* **14** 4: e441-e448. **ACKNOWLEDGEMENTS:** This project with project number 120331-06 was supported by the Forschungsfonds Aargau. ⁶ Biointerfaces, Laboratory for Materials-Biology Interactions, Empa, St. Gallen, CH.