
Introduction
The Open Signal Processing Worksta-
tion 2.0 is a Linux-based open software
platform, designed for rapid proto-
typing and the development of digital
signal processing audio algorithms and
corresponding user interfaces. Since
audio interface and computer hard-
ware can be chosen almost completely

freely, the system can be easily inte-
grated into any existing audio network
and studio environment. Besides the
necessary hardware components, OSPW
2.0 consists of the graphical program-
ming environment Pure Data (Pd) for the
signal processing, a script for the start-
up procedure and initial configuration,

and a webserver which generates
browserbased UIs for an arbitrary num-
ber of remote clients automatically. All
connected UI clients are synchronized
among each other. This enables the si-
multaneous operation of applications
by multiple users.

Overview
The OSPW software consists of two
main parts: the audio backend and the
OSPW server. The backend is based
on a plain Pd Vanilla installation. The
server is a Node.js application which

enables the user to control and
interact with the running Pd instance.
Once the design for an algorithm is
completed, the user can transfer the
patch to the server, where it is analysed

for automatic UI generation and
executed. Any device with a browser
running in the same network can be
used as remote control for the loaded
Pd patch.

Automatic UI Generation

Discussion
OSPW is an easy-to-use open source
DSP platform which can be built with
off-the-shelf hardware components.
The free choice of sound card (as
long as it is ALSA compatible) makes
the integration in any existing au-
dio environment possible. By using
Pd as audio backend, the signal pro-
cessing can be implemented both in the

C programming language and graphi-
cally. The graphical access also enables
“intermediate” programmers and ar-
tists in the field of media techno-
logy to use the system. OSPW enables
intuitive, network-based access to Pd.
Finished patches are simply pushed
into the designated folder and can then
be selected and operated via remote

client. Currently only the most impor-
tant UI elements (dials, sliders, labels
and number boxes) are implemented
for automatic interface generation.
To ensure intuitive handling for
more complex DSP algorithms, future
updates should also include more
sophisticated UI elements such as mul-
tisliders or frequency domain editors.

OSPW 2.0 - An Open Source Linux-based
DSP Server for Audio Applications

For a parameter to appear in the UI, a matching Open Sound
Control (OSC) string must be included in the Pd patch.
This is done by placing a comment containing the
string somewhere in the patch as shown in figure 3.
The syntax for the string is:

/ospw/x/y/widgetType/parameterName/initValue.

• The string has to start with the keyword ospw.
• x and y are grid coordinates within a scalable,
 symmetric grid
• widgetType defines the generated interface object.
 Possible values are button, toggle, number, dial, hslider,
 vslider.
• parameterName can be chosen freely and results in
 the rendered widget label.
• initValue initializes the interface object with the
 entered value.

Clemens Fiechter, Research and Development
School of Music, FHNW

Thomas Resch, Research and Development
School of Music, FHNW

Correnspondence: Clemens Fiechter, clemens.fiechter@students.fhnw.ch

OSPW Git-Repository: www.github.com/cfiechter/OSPW

Figure 1: A mixer demo application for OSPW.

Figure 2: A custom interface for the
OSPW binaural mixer demo

Figure 3: Pd Patch with two OSPW
parameters.

