Aufnahmeprüfung 2011

Name:						Vorname:	
	Studienrichtung:						
	Aufgabe	1	2	3	Total		
	Punkte						

Physik – Teil I (keine Hilfsmittel)

Zeit: 90 Minuten für Teil I (3 Aufgaben) und Teil II (6 Aufgaben)

Hilfsmittel: keine

Hinweise: - Erreichbare Punktzahlen: Teil I: 8 Punkte; Teil II: 16 Punkte

- Bei der numerischen Berechnung von Teil I genügen grobe Überschlagsrechnungen auf ca. 10% genau.
- Fehlende oder falsche Einheiten geben Punkteabzug.
- Wählen Sie $\pi \approx$ 3, $g \approx$ 10 $\frac{m}{s^2}$. Vereinfachen Sie Brüche durch Näherungen, z.B. $\frac{25}{6} \approx$ 4.
- Bei jeder Aufgabe sind die maximal erreichbaren Punkte angegeben.
- Beschriften Sie bitte jedes Ihrer Lösungsblätter ebenfalls rechts oben mit Ihrem Namen und Vornamen.

Viel Erfolg!

Mechanik

Aufgabe 1 [2 Punkte]

Die Dichte ρ von Wasser als Funktion der Temperatur T in °Celsius kann mit folgender Gleichung näherungsweise beschrieben werden:

$$\rho(T) = \frac{a_0 + a_1 \cdot T + a_2 \cdot T^2}{1 + b \cdot T}$$

Geben Sie die Einheiten der Konstanten a_0 , a_1 , a_2 und b an.

Aufgabe 2 [3 Punkte]

Der Fall eines Fallschirmspringers kann in vier verschiedene Bewegungsphasen unterteilt werden:

- i. Der Springer fällt senkrecht nach unten (nur *y*-Komponente der Geschwindigkeit) mit ungeöffnetem Schirm, bis er 11 s nach dem Absprung seine maximale Geschwindigkeit von 55 m/s erreicht.
- ii. Der Springer fällt weitere 5 Sekunden lang mit dieser konstanten Geschwindigkeit.
- iii. Der Springer zieht die Reissleine und öffnet den Schirm. Sein Sturz wird abgebremst; 3 Sekunden nach dem Öffnen des Schirms beträgt seine Geschwindigkeit noch 5 m/s.
- iv. Mit geöffnetem Schirm fällt er mit konstanter Geschwindigkeit weiter bis zur Landung am Boden.
- a) Zeichnen Sie das Geschwindigkeits-Zeit-Diagramm für die ersten 25 Sekunden dieser Bewegung. Nehmen Sie vereinfachend an, dass die Beschleunigung in einer Phase jeweils konstant sei.
- b) Skizzieren Sie das Beschleunigungs-Zeit-Diagramm für diese Bewegung.

Wir erwarten massstäbliche Diagramme mit angeschriebenen und vermassten Achsen, aus denen sich zahlenmässige Werte ablesen lassen.

Aufgabe 3 [3 Punkte]

Ein Gasballon, wie er für Wettermessungen verwendet wird, hat zusammen mit den Messgeräten, aber ohne Gasfüllung, ein Gewicht von 20 N. Er wird mit 3 m³ Heliumgas (Dichte 0.2 kg/m³) befüllt.

- a) Mit welcher Steigkraft hebt der Ballon am Boden ab, wenn die Luftdichte 1.2 kg/m³ beträgt?
- b) Bei welcher Luftdichte steigt der Ballon nicht mehr weiter, wenn sich die Hülle nicht ausdehnen lässt?