
Treibhausgasbilanzierung (Ökobilanzierung)

Bauphysik-Apéro FHNW

Prof. Roger Blaser Zürcher

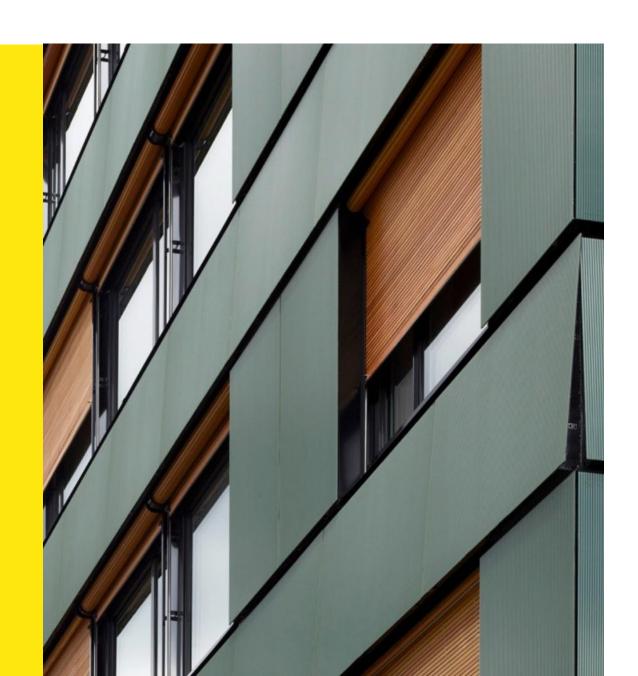
Inhalt

Weg von der Betriebsenergie hin zur Erstellung

Referent: Dr. Edwin Zea, FHNW

Die neue Norm SIA 390/1:2025 Klimapfad

Referent: Prof. Daniel Kellenberger, FHNW und neuer Präsident NK SIA 390


Gebäudeoptimierung zur Erfüllung der Norm SIA 390/1:2025

Referent: Gregor Steinke, FHNW

Apéro

Gebäudeoptimierung zur Erfüllung der Norm SIA 390/1:2025

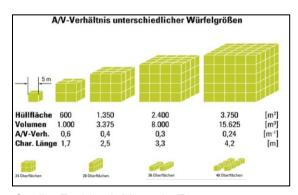
Gregor Steinke, FHNW

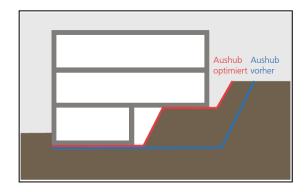
Inhalt

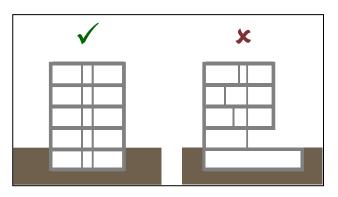
- SIA 390/1 Zusatzanforderung Erstellung und Betrieb
- Optimierungshebel: Erstellung
- Optimierungshebel: Betrieb
- Beispielberechnung Einflussfaktoren
- Fazit

SIA 390/1:2025 – Zusatzanforderungen Erstellung + Betrieb

WOHNEN		twerte jährli gasemissior		Anforderungen jährliche Treibhausgasemissionen kg/m²			
Basis	<u> </u>		Mobilität Zielwert B 4,0 13,0		Zusatzanforderung B 9,0		
Umbau							
Neubau			4,0	15,0	11,0		
Ambitioniert	Erstellung	Betrieb	Mobilität	Zielwert A	Zusatzanforderung A		
Umbau	4,0	3,0	3,0	10.0	7,0		
Neubau	6,0	1,0	3,0	10,0			


Quelle: SIA 390/1:2025


Ehrgeizige, aber erreichbare Ziele für THG-Emissionen für Erstellung und Betrieb >> Weg zu Netto-Null


Optimierungshebel Erstellung: Suffizienz & Reduktion

Suffizienz (weniger bauen):

- Bestand nutzen: Umbau und Weiternutzung statt Neubau pr
 üfen
- Flächeneffizienz: Bedarfsgerechte Grundrisse, Flexibilität
- Kompakte Volumen: Optimierung Gebäudeform, Reduktion Hüllfläche
- Untergeschosse minimieren
- Einfache, optimierte Tragwerke: Materialminimierung, angepasste Spannweiten
- Leichtbauweisen pr
 üfen
- Einfache Bauweise und Konstruktionen

Quelle: Fachbuch Minergie-Eco

Optimierungshebel Erstellung: Materialwahl & Kreislauf

Materialwahl (anders bauen):

- THG-arme Materialien: Holz, Lehm, etc.
 (Basis: Ökobilanzdaten KBOB & Ecobau)
- Langlebige Materialien wählen (reduziert Ersatz über Lebensdauer)
- Vermeidung emissionsintensiver Materialien wo möglich

Kreislaufwirtschaft (länger nutzen):

- Wiederverwendung (Re-Use): Anrechnung gemäss SIA 390/1
 Planung auf Verfügbarkeit von Bauteilen abstimmen
- Recyclingfähigkeit / Trennbarkeit: Systemtrennung konsequent umsetzen

Quelle: Baubüro insitu / Herzog & de Meuron

Optimierung Betrieb: Bedarfsreduktion

Gebäudehülle optimieren:

- Sehr guter Wärmeschutz (U-Werte, Wärmebrücken minimieren)
- Passive Solargewinne (vs. sommerlicher Wärmeschutz)
- Luftdichtheit

Sommerlicher Wärmeschutz:

- Effektive aussenliegende Verschattungssysteme
- Optimierter Fensterflächenanteil (Tageslicht vs. Überhitzung)
- Speichermasse nutzen
- Gebäudebegrünung prüfen

Tageslichtnutzung:

- Grundrissgestaltung, Fensteranordnung optimieren
- Tageslichtabhängige Kunstlichtsteuerung

Quelle: Baumschlager Eberle

Optimierung Betrieb: Effiziente & erneuerbare Systeme

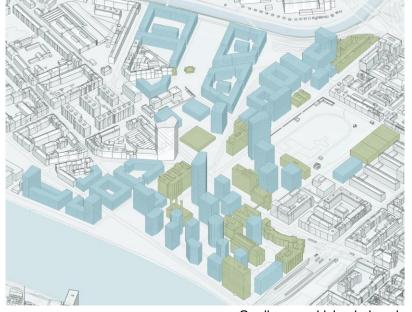
Anlagentechnik (Heizen, WW, Kühlen, Lüften):

- Fossilfreie Systeme (Wärmepumpen, Holz, Fernwärme etc.)
- Hohe Systemeffizienz: JAZ/Nutzungsgrade
- Wärmerückgewinnung prüfen (Lüftung, Abwasser)
- Bedarfsgerechte Regelung und optimierte Hydraulik/Verteilung

Strom:

- Maximierung PV-Ertrag am Standort (Eigenverbrauch optimieren)
- Anrechnung PV-Strom und Lieferverträge gemäss Regeln SIA 390/1
- Effiziente Beleuchtung und Geräte

Quelle: salathearchitekten.ch


Beispiel Gebäudeoptimierung THGE Betrieb + Erstellung

- Neubau Mehrfamilienhaus (Areal Klybeckplus, Basel)
- 6 Geschosse über Terrain, 1 Geschoss unter Terrain
- ca. 10'000 m² Energiebezugsfläche
- U-Wert Opak 0.20 W/(m²K), U-Wert Fenster 0.90 W/(m²K), Q_h ca. 20 kWh/(m²a)
- PV-Anlage Dach (70% Belegung)
- Varianten Parameter
 - Bauweise
 - Fensterflächenanteil
 - Wärmeerzeugung

Berechnung Tool SIA 380/1 und Tool SIA 390/1 (modifiziert)

SIA 390/1 Wohnen - Basis (B)						
Richtwerte	}	Anforderung				
Erstellung	Betrieb	Zusatzanforderung B				
9.0	2.0	11.0				

		· \			
SIA 390/1	Wohnen	n - Ambitioniert (A)			
Richtwerte		Anforderung			
Erstellung	Betrieb	Zusatzanforderung A			
6.0	1.0	7.0			

Quelle: www.klybeckplus.ch

	Massivba	Massivbau			Holz/Beton-Hybridbau			Holzbau		
	Erstellung	Betrieb	∑ ZA B	Erstellung	Betrieb	∑ ZA B	Erstellung	Betrieb	∑ ZA B	
Wärmepumpe LuWa.	(80%)									
Gas (20%)										
70% Fensteranteil	11.0	4.0	14.9	9.9	4.0	13.9	9.5	4.0	13.5	
50% Fensteranteil	10.8	3.9	14.7	9.7	3.9	13.5	9.3	3.9	13.1	
30% Fensteranteil	10.7	3.8	14.5	9.4	3.8	13.3	9.0	3.8	12.8	
Fernwärme										
70% Fensteranteil	10.9	2.6	13.5	9.8	2.6	12.4	9.5	2.6	12.0	
50% Fensteranteil	10.8	2.5	13.3	9.6	2.5	12.1	9.2	2.5	11.7	
30% Fensteranteil	10.6	2.5	13.1	9.4	2.5	11.8	9.0	2.5	11.4	
Wärmepumpe Wasser	-Wasser									
70% Fensteranteil	11.0	1.4	12.3	9.9	1.4	11.2	9.5	1.4	10.9	
50% Fensteranteil	10.8	1.3	12.2	9.7	1.3	11.0	9.3	1.3	10.6	
30% Fensteranteil	10.7	1.3	12.0	9.4	1.3	10.7	9.0	1.3	10.3	

jährliche Treibhausgasemissionen [kg CO₂-äqu./(m²a]

Quelle: INEB

Fazit

- Wichtigste Hebel Erstellung: Suffizienz (Menge), Materialwahl (Low-Carbon),
 Kreislauf (Re-Use)
- Wichtigste Hebel Betrieb: Bedarfsreduktion (Hülle), Effizienz (Systeme),
 Erneuerbare (fossilfrei und PV)
- Summe aus Erstellung und Betrieb zusammen optimieren
- Frühe Phasen entscheidend: Weichenstellungen in SIA Phasen 1 & 2
- Integrale Planung: Erfolg durch enge Zusammenarbeit von Architektur, Bauphysik, Gebäudetechnik,
 Fachplanung
- Bauphysik als wichtige Disziplin:
 - Optimierung thermische Gebäudehülle und sommerlicher Wärmeschutz
 >> NEU zusammen mit Grauen THGE und ökologischen Materialkennwerten

Fragen?

Aus- und Weiterbildung in Bauphysik an der FHNW

Ausbildung

Neu Studiengänge in B.Sc EUT FHNW mit

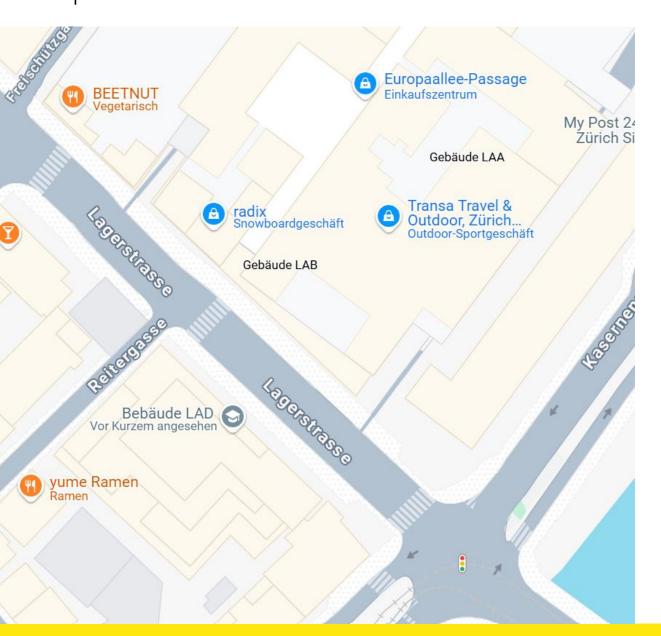
- Erneuerbare Energien und Energiesysteme
- Kreislaufwirtschaft und Ressourcenmanagement
- Nachhaltige Gebäude und Städte (Profil Bauphysik!), nächster Start 09.2025

Weiterbildung

DAS FHNW Bauphysik mit nächstem Start CAS FHNW Bauphysik am 30.09.2025

- > www.fhnw.ch/de/studium/technik/energie-umwelttechnik/nachhaltige-gebaeude-und-staedte
- > www.fhnw.ch/de/weiterbildung/architektur-bau-geomatik/bauphysik/das-bauphysik

Bauphysik-Apéro FHNW


Der nächste Bauphysik-Apéro der FHNW findet am 14. Mai 2026 statt.

Bauphysik-Apéro FHNW 2025

> www.fhnw.ch/de/weiterbildung/architektur-bau-geomatik/fachveranstaltungen/archiv

Newsletter FHNW

> www.fhnw.ch/de/weiterbildung/architektur-bau-geomatik

Apéro

Wir treffen uns im BEETNUT schräg vis à vis des Eingangs zur PHZH.